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Abstract

The paper develops a systematic procedure for modelling linear flexible multibody structures of which the
flexible parts are a composition of beams. The theory of mechanics of solids is fit into a general expression
of virtual work, linking rigid-body motions with flexible deformations of the different bodies. A
comparison is made with the finite element method for approximating the behaviour of the flexible bodies.
It turns out that the discrete element method boils down to a particular selection of shape functions of
which the mass matrix is inconsistent with the flexibility matrix. Furthermore, contrary to the finite element
method, only point forces can be applied.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling techniques can be classified as black box and white box methods. A white box model
is obtained by applying physical laws combined in one or a set of mathematical equations. In
black box modelling, a mathematical relationship between the input and the output is established,
regardless of the underlying physics. The main advantage of white box modelling is that it
provides physical insight into the behaviour of the mechanism, which is essential for virtual
prototyping. In this way virtual prototyping can be performed. Controllers can be designed and
validated on the model or a mechatronic approach can be followed in which the mechanism and
the controller are jointly optimized. Concerning robust controller design, white box modelling has
the additional advantage that it is easier to model the uncertainty structure, because all
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parameters have a physical meaning. The uncertainty structure reflects bounds on the variation of
physical parameters, bounds on non-linearities or bounds on neglected dynamics. Especially in
m-synthesis [1–4] and in quantitative feedback theory (QFT) [5–7] this uncertainty structure is
exploited.

Once it has been decided to perform white box modelling, the first concern is to find a suitable
technique to derive a linear model. In this paper methods are investigated for linear modelling,
based on the basic laws of mechanics. A theoretical technique is established by a systematic and
consistent procedure, minimizing the amount of intuition required during derivation of a model.
The resulting model should contain a maximum of information and accuracy and has a minimum
complexity. Therefore, several methods based on Newton’s laws need to be investigated.

The objective of this paper is to elaborate a linear technique for modelling flexible multibody
structures of which the flexible bodies are a composition of beam elements. An example of such
type of systems is an agricultural spray boom, which was studied in previous work [8] by analyzing
the vibrational characteristics of a flexible beam. About the modelling and control of flexible
beams, an extensive amount of literature is available. A rudimentary way of modelling flexible
beams is to consider them as lumped masses interconnected with springs. However, this approach
needs a lot of insight into the fundamental properties of the structure and the modelling procedure
becomes very intuitive when the lumped masses are mixed with rigid bodies. Considering one
flexible body with the shape of a beam, a model can be derived by solving the Euler–Bernouilli
equation [9]. If the moment of inertia and the contribution of shear to bending are not negligible,
approximate solutions for the Timoshenko beam equation must be found [10]. Several
approximation methods to solve these partial differential equations are proposed in the literature
[10,11]. However, in practice, considering flexible multibody beam-like structures like agricultural
spray booms, flexible robot arms or cranes, etc. as one simple flexible beam with no rigid-body
modes, is too conceptual and too far from reality. In addition a lot of intuition is required to
arrive at a certain model.

Ramon [8] observed that agricultural spray booms are basically linear flexible multibody
systems for which the theory and methods of dynamics of flexible multibodies need to be
employed. Therefore, he developed a systematic procedure to combine flexible and rigid-body
motions of multibody systems in one linear model. The flexibilities are approximated by finite
elements. In this paper, a procedure is outlined to derive a linear model for flexible multibody
systems of which the flexible elements are a composition of beams. Flexibilities are handled by the
theory of mechanics of solids. Several ways for mass allocation are studied and a comparison is
made with the finite element method. As the procedure developed by Ramon [8,12] is a finite
element based method for modelling linear flexible multibody systems, the procedure described in
this paper can be considered as a discrete element approach for modelling linear flexible
multibody systems.

2. Kinematic description of a point in space

In this section, systems having an open kinematic chain or tree structure are considered. This
enables one to describe every point in space in a unique way. To derive the equations of motion
systematically and consistently a good kinematic description of a point of the structure is very
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important. The description of a point in space is based on Shabana [13]. The kinematic
description of a point involves an appropriately selected co-ordinate system and a systematic
procedure to locate a point in space. Using the proposed co-ordinate system, it is shown that the
position vector of a point Pij is determined as a vector sum of three vectors i.e., a vector following
the body when it moves as an undeformable structure, a vector pointing to point Pij when the
body is in undeformed state and a vector indicating the change in position of Pij due to flexible
deformations of the body.

A first subsection discusses the selection of the co-ordinate systems and the characterization of
a position vector of a point Pij as a sum of three vectors. In the next subsection, it is explained how
to determine these three vectors. Generally, the position of a point is a non-linear function of the
co-ordinates. The linearization process is discussed in the last subsection.

2.1. Co-ordinate system and location of a point in space

To facilitate the kinematic description of a flexible multibody system, the co-ordinate system
and the procedure to locate a point in space must be selected in an appropriate way. The same
kinematic description as in Ref. [13] is used. This kinematic description, depicted in Fig. 1, allows
a transparent discrimination between the motion of the body as an undeformable structure and
flexible deformations of the body itself. In the next section, it is shown that this turns out to be an
advantage for obtaining the starting equation from which the equations of motion are derived.

To observe any point of the multibody system with respect to the same reference, a fixed
absolute co-ordinate system (0x; 0y;0z) with origin o0 is selected. Note that in Fig. 1 vectors with
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Fig. 1. Description of the position of a point in body i before and after deformation.
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the left superscript 0 are interpreted in the absolute reference frame. Every body i is allocated a
floating or body reference frame ðix; iy; izÞ with origin oi; following the rigid-body motions of body
i: The rigid-body motions are those motions of a body i where all particles of the body perform
the same displacements. Consequently, in case the body is flexible, the origin oi is not connected to
a physical point of the body. When body i is deforming, frame ðix; iy; izÞ is ‘floating’ in the body,
which explains its name. A position vector 0ri locates the absolute position of the origin oi with
regard to ð0x; 0y; 0zÞ: By definition 0ri is independent of the flexible co-ordinates of the body itself
but it can change due to flexible deformations of other bodies and due to elastic deformations of
the joints connecting the bodies. Because of the floating nature of the body reference frame
ðix; iy; izÞ; flexible deformations of body i can be described easily with respect to this frame. From
the body reference frame, every point of the body in undeformed state, P0

ij is determined by a
position vector sij pointing from oi to P0

ij (Fig. 1). The meaning of the extra right subscript j will
become clear during the remainder of the text. Note that the left superscript 0 of vector sij is
missing, which indicates that the vector is interpreted in the co-ordinate system ðix; iy; izÞ in which
it is defined. As the floating reference frame ðix; iy; izÞ follows the rigid-body motions, sij is fixed.

Graul [14] puts the origin of the body reference frame always in the centre of mass of the body
as some body properties such as for example moments of inertia become simpler. Again the origin
of the body reference frame is not connected to a physical point, since during deformation of the
body, the centre of mass changes its position in the body. As a result, 0ri becomes dependent on
flexible co-ordinates of the body itself. With this selection of co-ordinate system, it is impossible to
get a clear separation between motions of the body as an undeformable structure and flexible
deformations.

Since the floating reference frame exclusively follows rigid-body motions of the body, flexible
deformations are fully described within this reference frame. This is performed by a vector itij ;
reflecting the displacement of a point Pij; from the position before the deformation P0

ij to the final
position after deformation Pij (Fig. 1). Strictly speaking, with the vectors 0ri; 0sij and 0tij ; the
absolute reference frame and the floating reference frames, the position of a point of a flexible
multibody system is perfectly defined. However, in some cases, a floating reference frame is not
very suited to describe itij ; especially when complex flexible structures are involved, which are
difficult to approximate by for example the Rayleigh–Ritz, the assumed modes or the Galerkin
method [11]. In case the flexible behaviour is calculated with other approximation techniques, able
to tackle complex geometries, as for example the finite element method, the body is split into a
finite number of elements requiring local co-ordinate systems, of which the co-ordinates are only
defined within the element. These local frames are called intermediate element reference frames
ðijx; ijy; ijzÞ and their origin oij is rigidly attached to the origin of the floating reference frame
ðix; iy; izÞ: The orientation of the co-ordinate system ðijx; ijy; ijzÞ is assumed to be fixed to the
floating reference frame ðix; iy; izÞ: This implies that both frames ðijx; ijy; ijzÞ and ðix; iy; izÞ translate
and rotate together. Their orientation is not necessarily parallel but remains constant. Note that
the name element not necessarily refers to a finite element, but it is just used as a general naming.
The term intermediate refers to the fact that the frames ðijx; ijy; ijzÞ are not rigidly attached to a
point of the element. The co-ordinate systems of which the origin is rigidly attached to a point on
the element are called element reference frames ðij #x; ij #y; ij #zÞ: Normally, the co-ordinate axes of
ðij #x; ij #y; ij #zÞ are selected in such a manner that they are initially parallel to the axes of the
intermediate element reference frame ðijx; ijy; ijzÞ: The element reference frames ðij #x; ij #y; ij #zÞ are only
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used when other bodies are connected to the element in order to express their rotations and
displacements, caused by the flexible deformations of the element.

2.2. Determination of vectors 0ri; 0sij and 0tij

From the above, it is clear that the position vector 0pij of a point Pij can be written as
0pij ¼

0ri þ 0sij þ 0tij: ð1Þ

A procedure to determine 0ri; 0sij and
0tij ; will be outlined. This procedure is closely related to the

geometrical structure of the multibody system. In this section and the next section, flexible
multibody systems, having a tree-structure i.e., containing no closed kinematic chains, are
investigated. In tree structured systems, there is only one unique way to go from one body to
another, by following the joints and the bodies of the system. For such systems and with Eq. (1) it
is possible to describe every point in an unambiguous way. Later on in Part 2 of the paper [15], it
is shown how the procedure can be extended to systems with closed kinematic chains. If every
point is written as a function of independent Lagrangian co-ordinates and flexible co-ordinates,
defined via tij; no constraint equations are involved in the equations of motion, reducing
redundant degrees of freedom of the system. A rotation around a cylindrical joint is an example of
a Lagrangian co-ordinate i.e., the relative position of two bodies can be described as a function of
the rotation angle of the hinge around the hinge axis. The combination of Lagrangian and flexible
co-ordinates are often called hybrid or generalized co-ordinates. In this paper, Lagrangian co-
ordinates are sometimes referred to as rigid-body co-ordinates.

Once the geometrical structure of the system is known and the decision is made as to what kind
of co-ordinates to use, the vectors of Eq. (1) can be calculated. In a first step, vector 0ri; pointing
from the origin of the absolute reference frame to the origin of the floating reference frame is
determined. This is done based on the location of a body ði � 1Þ; connected through a joint k with
body i: This body is named body ði � 1Þ because when starting at the inertial body, attached to the
absolute reference frame, and following the bodies and the joints, this body is the last body that is
met before encountering body i in the kinematic chain. From body ði � 1Þ; it is supposed that the
location of every point of the body is known i.e. 0ri�1; 0si�1j and

0ti�1j as well as the orientation of
the floating, the intermediate element and element reference frames. According to Fig. 2, 0ri is
determined as the vector sum of

0ri ¼ 0ri�1 þ 0si�1a þ 0ti�1a þ 0zi�1i � 0sib: ð2Þ

Points a and b are the connection points between joint k and, respectively, body ði � 1Þ and i: The
origins #oi�1a and #oib of the element reference frames ði�1a #x; i�1a #y; i�1a #zÞ; ðib #x; ib #y; ib #zÞ are rigidly
connected to the elements in point a respectively b: Although the joint of Fig. 2 is, as a matter of
an example, a cylindrical joint, allowing one rotational and one translational degree of freedom,
expression (2) is completely general, as is indicated in the remainder of the text. Note that no
flexibilities 0tib of body i are involved in Eq. (2) since 0ri follows only the rigid-body motions of
body i; as explained in the previous subsection. In a second step, vectors 0sib and 0zi�1i need to be
determined.

Vector 0sib follows the rigid-body motions of body i and can consequently be written as

0sib ¼ 0Aisib ð3Þ

ARTICLE IN PRESS

J. Anthonis, H. Ramon / Journal of Sound and Vibration 266 (2003) 515–534 519



in which sib is the vector interpreted in the floating reference frame ðix; iy; izÞ from the origin oi of
this frame to point b when body i is considered in undeformed state. Once frame ðix; iy; izÞ is
allocated to body i; sib is known. Matrix 0Ai is a co-ordinate transformation matrix for
transforming the co-ordinates in the floating reference frame ðix; iy; izÞ to the absolute reference
frame ð0x; 0y; 0zÞ: The left superscript of the transformation matrix refers to which reference frame
the co-ordinates, defined in the frame indicated by the right subscript, are transformed. Body i can
only change orientation with respect to body ði � 1Þ; due to rotation of joint k and due to changes
in orientation of the element to which point a is attached. Therefore, transformation matrix 0Ai

can be written as a multiplication of the following matrices:

0Ai ¼ 0Ai�1
i�1Ai�1a

i�1aA ci�1ai�1a

ci�1ai�1aAbibibibAi: ð4Þ

The hat ð4Þ on the subscript and superscript of the transformation matrix A refers to element
reference frames. The transformation matrix from element reference frame ðib #x; ib #y; ib #zÞ to the
intermediate element reference frame ðibx; iby; ibzÞ is a unity matrix because body i is in
undeformed state and is omitted. Transformation matrices from a floating reference frame to an
intermediate element reference frame or vice versa, such as i�1Ai�1a and ibAi; are constant matrices
and can be determined once the floating reference frames and the intermediate element reference
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frames are placed in the body. Matrix i�1aA ci�1ai�1a
is only a function of the flexible co-ordinates of

element ði � 1aÞ because it is the transformation matrix between the intermediate element

reference frame ði�1ax; i�1ay; i�1azÞ and the element reference frame ði�1a #x; i�1a #y; i�1a #zÞ and can be

determined. The change in orientation between the element reference frames ði�1a #x; i�1a #y; i�1a #zÞ

and ðib #x; ib #y; ib #zÞ is due to rotations allowed by joint k: Consequently,
ci�1ai�1aAbibib is only dependent on

the rotational Lagrangian co-ordinates of joint k and can be derived immediately.
The translation of body i with respect to body ði � 1Þ due to the translational degrees of

freedom of the joint k is represented by vector 0zi�1i: Because the location of body ði � 1Þ is
completely known, 0zi�1i is in general determined as

0zi�1i ¼ 0Ai�1
i�1Ai�1a

i�1aA ci�1ai�1a
ðz0i�1i þ qk1e1 þ qk2e2 þ qk3e3Þ: ð5Þ

Vectors e1; e2; and e3 are the unit vectors indicating the directions, defined in element reference
frame ði�1a #x; i�1a #y; i�1a #zÞ; attached to point a, along which the joint allows translation. Lagrangian
co-ordinates qk1; qk2; qk3 represent the amount of translation performed by joint k: The
representation of Eq. (5) is a general formulation. In case of a cylindrical joint as in Fig. 2, only
one direction e1 and one co-ordinate qk1 is required. The distance between a and b when the joint
is in rest position is determined by z0i�1i:

With Eqs. (3)–(5), supposing that the location and orientation of every point of body ði � 1Þ is
known, Eq. (2) can be determined. To derive vector 0ri an iterative procedure is needed and the
procedure is started at the bodies linked with a joint to the inertial body, attached to the absolute
reference frame ð0x; 0y; 0zÞ: In the inertial body all position vectors are known. Vector 0r0 is a
ð3� 1Þ vector of zeros, 0s0a is a constant vector known from the geometry of the inertial body

and 0tb0a0a
is function of the flexible co-ordinates of the inertial body. 0A0; is the identity matrix, 0A0a

is a constant matrix depending on the geometry of the inertial body and 0aAb0a0a
is function of the

flexible co-ordinates of the inertial body. Once the vectors ri of the adjacent bodies of the inertial
frame are determined, the succeeding vectors ri in the kinematic chain are appointed by Eqs. (2)–
(5). This procedure is repeated until all the origins of the floating reference frames are described.

After the calculation of 0ri in Eq. (1), 0sij and
0tij still need to be derived. The determination of

0sij has already been explained through 0sib and is performed with Eqs. (3) and (4). With respect to
the intermediate element reference frame ðijx; ijy; ijzÞ; tij is only a function of the flexible
deformation and is consequently known, but needs to be transformed to the absolute reference
frame:

0tij ¼ 0Aijtij ¼ 0Ai
iAijtij : ð6Þ

The co-ordinate transformation matrix 0Ai is calculated in Eq. (4). Matrix iAij is a constant
transformation matrix and is known once the position and the orientation of the floating and
intermediate element reference frames are known.

2.3. Linearization procedure

In the previous subsection, it has been shown that every position vector 0pij is built up
sequentially. Therefore, linearization is performed during the construction of 0pij : Summations do
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not cause non-linearities. Consequently, only expressions containing multiplications need to be
investigated. In Eq. (3) sib is constant, such that 0Ai is left to be linearized, which is performed on

Eq. (4). Only 0Ai�1; i�1aA ci�1ai�1a
and

ci�1ai�1aAbibib are functions of the hybrid co-ordinates and need

linearization. Matrix 0Ai�1 is supposed to be already in linear form. Matrices i�1aA ci�1ai�1a
and

ci�1ai�1aAbibib
are functions that are linearized around a nominal working point by a Taylor series expansion.
After multiplication of the transformation matrices in Eq. (4), all products between co-ordinates
are neglected.

Concerning the linearization of Eq. (5), transformation matrix 0Ai�1 is supposed to be already
linearized and i�1Ai�1a is a constant matrix. Again in the multiplication, all products between co-
ordinates are neglected.

For Eq. (6) iAij is a constant matrix and 0Ai is already linearized. Vector tij is a constant vector,
such that Eq. (6) is in linear form.

3. General equation for deriving the equations of motion for flexible multibody systems

In the previous section it was explained how rigid-body motions of the whole system and the
flexible behaviour of the individual bodies are combined kinematically. The dynamic behaviour of
the flexibilities of the different bodies and of the rigid-body motions of the system needs to be
coupled. For both separately, well-documented methodologies are available. A procedure, leading
to a general equation, must be found, to combine consistently the dynamics caused by body
flexible deformations and the dynamics from rigid-body motions of the individual bodies.

In this paper, a virtual work formulation as in Refs. [8,12,16] is employed. This equation is
based on methodologies for modelling rigid multibody systems [17,18], in which the principle of
virtual work and the principle of d’Alembert are combined together with the theory of structural
analysis [19]:Xn

i¼1

Xmbi

j¼1

Z
Vij

rijd
0pTij

0 .pij dVij ¼ �
Xn

i¼1

Xmbi

j¼1

Z
Vij

deTij rij dVij þ
Xn

i¼1

dWsi þ
Xn

i¼1

dWbi: ð7Þ

Eq. (7) is proved in Ref. [16] in which n is the total number of bodies, mbi the number of elements
in body i; Vij the volume of element j in body i and rij the mass density of element j in body i: By
moving some terms to the other side of the equality sign, Eq. (7) can be understood intuitively.
From an energetic point of view and with the principle of d’Alembert, it can be said that the
virtual work of the inertia forces, the virtual work of the surface forces dWsi and the body forces
dWbi; result in an increase in internal energy. The internal energy in this case is the energy created
by stress rij and strain eij in the different elements [20]. The stresses rij and strains eij must be
interpreted in the intermediate element reference frames. This can be understood intuitively. By
the selection of the co-ordinate systems, flexibilities are described in the intermediate reference
frame. Because the stress rij and strain eij are related to deformations, they must be interpreted in
the intermediate reference frames. Surface forces, embedded in dWsi; include all forces, external to
the body i and not necessarily external to the system, acting on the surface of the body i; exclusive
constraint forces. Constraint forces reduce the number of degrees of freedom of the system and
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are generally acting in joints in the directions in which no motion is allowed. The body forces,
covered by dWbi; are for example gravitational and magnetic forces.

4. Equations of motion

With Eq. (7) and the kinematic description of a point of the flexible multibody system in
Eq. (1), the equations of motion can be derived. However, it has not yet been explained how to
determine tij ; the displacement of a point due to flexible deformations and how to calculate sij and
Eij . These last two problems are related to the question of how flexibilities are handled. This
section proposes two methods to treat the flexibilities of the bodies. The first, elaborated by
Ramon [8,12], is based on finite elements. The second one, the discrete element approximation, is
developed in this text and makes use of results of the mechanics of solids. Once it is decided how
to deal with the flexibilities, the equations of motions are derived.

The main objective of this section is to arrive at the linearized equations of motion, written in
matrix notation of the following form [8,12]:

Ms

.q

.u

" #
þ Cs

’q

’u

" #
þ Ks

q

u

" #
¼ VsvþWsw ð8Þ

in which Ms; Cs; Ks; are, respectively, the mass, damping and stiffness matrix of the system. Co-
ordinates associated with rigid-body motions are represented by q; and flexible co-ordinates by u:
On the right hand side of Eq. (8), distinction is made between forces v coming from commands of
a controller, and forces w resulting from disturbances on the system. Matrices Vs and Ws are the
force input distribution matrices corresponding to v and w:

4.1. Finite element approximation

In the finite element method, the body is discretized into a finite number of elements, which are
connected through nodes. Nodes are certain physical points in and at the vertices of the elements.
With these nodes, the state of the element i.e. the displacement caused by flexible deformations is
supposed to be known. From the position of the nodes, the other points of the element are
calculated through interpolation [21]. Because the interpolation involves an approximation of the
shape of the element after deformation, the interpolation functions are called shape functions.
Every node has a certain number of degrees of freedom, represented by nodal co-ordinates. For a
certain element ij; nodal co-ordinates are collected in the vector #uij; defined in the intermediate
element reference frame ðijx; ijy; ijzÞ: In matrix notation, the displacement of an arbitrary point
caused by flexible deformations, described within ðijx; ijy; ijzÞ; can be written as

tij ¼ WT
ij #uij; ð9Þ

where Wij is a matrix containing the interpolation functions, which are function of the Cartesian
co-ordinates of ðijx; ijy; ijzÞ: By substituting the position of the considered point within ðijx; ijy; ijzÞ
when body i is in its undeformed state, Wij is determined and with known #uij ; can be calculated [8].
For coherence reasons, the nodal co-ordinates are not defined in the intermediate
element reference frame ðijx; ijy; ijzÞ but in the floating reference frame ðix; iy; izÞ: Therefore tij
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turns into [8]:

tij ¼ WT
ijTijuij ð10Þ

in which uij are the co-ordinates described in ðix; iy; izÞ and Tij the transformation matrix from uij

to #uij : Note that with uij; containing a finite number of nodal co-ordinates, the displacement due to
flexible deformations of element ij is completely characterized. Consequently, the finite element
method approximates the behaviour of a flexible body by a finite number of degrees of freedom.

Once tij; the displacement of a point Pij ; resulting from flexible deformation is known, eij can
immediately be calculated. In the derivation of Eq. (7), these displacements are assumed to be
small. The connection between tij and eij is given by

eij ¼ Dijtij ; ð11Þ

where Dij is an operator defined by

@

@xij

0 0

0
@

@yij

0

0 0
@

@zij

@

@yij

@

@xij

0

@

@zij

0
@

@xij

0
@

@zij

@

@yij

26666666666666666666664

37777777777777777777775

: ð12Þ

In the literature, several relations between eij and rij are considered. For Hookean materials, this
relationship is linear [20,22]:

rij ¼ kijeij : ð13Þ

A Kelvin–Voight model [23,24], describing the behaviour of visco-elastic materials, adds an
additional viscous term, proportional to the time derivative of eij:

rij ¼ kijeij þ wij ’eij : ð14Þ

Note that in case Eq. (13) is used, the material of the bodies is supposed to have no damping.
At this stage, all the ingredients are available to derive the equations of motions with the aid of

Eq. (7). Ramon [8,12], worked out Eq. (7) symbolically for the finite element approximation
method and obtained the linearized Eq. (8). The determination of the matrices in Eq. (8) is
explained in Refs. [8,12].

4.2. Discrete element approximation

The finite element method is generally applicable for handling structural flexibilities but is
probably not purposeful enough to end up with the most compact model. Flexible spray booms
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are a composition of elastic beams. Concentrating on other techniques for modelling beam
structures will presumably yield a model with a smaller complexity but with the same accuracy.
Equivalent to the finite element method, the objective of this subsection is to provide all necessary
information to be able to arrive at the linear expression (8).

In finite element analysis, an approximation of the shape of the body after deformation is
considered as a starting point for deriving the equations of motion. In order to obtain a good
prediction of the modes of interest, the number of elements, in which the beam is divided, must be
sufficiently large. Another approach is to split the flexible structure into small rigid masses,
interconnected with springs and dampers. This idea of lumping the mass of a flexible structure is
employed in many textbooks and papers [25,26]. Sometimes, in a finite element analysis, the mass
matrix is derived by lumping the mass of the flexible bodies of the structure in undeformable
masses. The resulting mass matrix is then called inconsistent or lumped mass matrix [27,28].
Contrary to finite element analysis, through the concept of approximating the flexible bodies as a
lumped system with a finite number of degrees of freedom, the modes of interest of a flexible beam
can be modelled by a small number of undeformable masses, interconnected by springs and
dampers. For example Kino et al. [29] and Torfs et al., [30] lump a beam in a number of masses
equal to the number of modes. The models predict very well the behaviour of the flexible beam
and are well suited for controller design. However, the division of the beam into masses and the
determination of the spring and damper constants is rather intuitive and empirical. A method
should be found to perform this more systematically. Seto et al. [31] approximate the first five
modes of a bridge tower by five lumped masses interconnected by springs. The allocation of
masses to the five lumps and the determination of the spring constants are derived from the modal
vector components. A drawback of this method is that a finite element analysis must be performed
in order to know the mode shapes.

The same idea of lumping the mass of a flexible beam is used in Stodola’s and Holzer-
Myklestad’s method for calculating the eigenfrequencies or critical speeds of shafts [27,28,32], but
the approach is more analytical and systematic than the methods just discussed. The mass of the
continuous shaft is lumped and concentrated in a limited number of points, named mass
allocation points. Instead of interconnecting the masses with springs of which the stiffness
coefficient must be determined in an empirical way, all masses are connected to the same beam
spring, having the same stiffness properties of the original shaft. The accelerations at the mass
allocation points induce inertia forces, which cause bending or torsion. The displacement or the
twist angle of the shaft can be calculated, using the formulas of mechanics of solids. Note that the
mass of the shaft is lumped, but the stiffness properties are not.

Vernon [33] follows a similar train of thought in the so-called lumped parameter approximation
method, illustrated in Fig. 3. By splitting the flexible beam in a number of small undeformable
beams, interconnected through a massless beam and with equal stiffness properties as the original
flexible beam, the modes of the beam are calculated through a mass and stiffness matrix. Again,
the massless beam plays the role of a beam spring. The mass matrix is derived from the
geometrical shape of the small undeformable beam and the stiffness matrix is calculated, based on
the theory of mechanics of solids.

Przemieniecki [20] employs a generalization of the concept of Vernon. As in the finite element
method, he divides a flexible structure into elements, named discrete elements, which are
interconnected by nodes. A global stiffness matrix is derived, based on the assembly of the
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stiffness properties of the individual elements. For beam structures, the stiffness properties of an
element i.e. the relation between the displacements at the nodes of an element and the loads
applied to realize these displacements, are derived by means of the theory of the mechanics of
solids. A mass matrix is calculated by allocating mass to the nodes. This allocation is performed
by assuming a certain displacement function of the element and is actually comparable to the
finite element method. The methodology of Przemieniecki [20] concentrates on one flexible body
but is not limited to beam structures. It also includes structures consisting of plate and
tetrahedron elements. For static problems, the procedure to determine the stiffness matrix is
sometimes called the stiffness method.

In this paper Przemieniecki’s method [20], also called the discrete element method, is extended
to linear flexible multibody systems. The discrete element idea is fit into the virtual work
expression (7) for flexible multibody systems and linearizations are performed in order to obtain
the form of Eq. (8).

4.2.1. Lumping of the bodies and co-ordinate systems
In order to start the derivation of Eq. (7), co-ordinate systems must be allocated to the

multibody system, as explained in Section 2.1. In the first step, each flexible body i has to be
divided into mbi elements. In the case of the discrete element method a choice has to be made
whether this division is performed according to the mass or flexibility properties of the structure.
In the finite element method, this choice should not be made because division in elements is solely
performed on the geometry or shape of the system. The problem of dividing the structure into
elements according to mass or flexibility properties for the discrete element method is highlighted
in Fig. 3.

Inspection of Fig. 3 reveals that mass and stiffness are depicted differently. The mass properties
are represented by a finite number of undeformable beam elements whereas the stiffness
properties are comprised in one single massless beam spring. Consequently, the definition of the
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elements can be different when mass or stiffness properties are concerned. For example, when the
stiffness properties are studied, an element can coincide with a beam or for the mass properties, a
lumped mass can be taken. By this, the number of elements of body i depends on whether mass or
stiffness properties of the beam are involved. However in order to be consistent with Eq. (7), the
elements should be identical regardless of the fact that mass or stiffness properties of the beam are
investigated.

In Ref. [20] an element is denoted as the piece between two mass allocation points. Again the
interpretation of the element is dependent on whether the mass or stiffness properties of the beam
are concerned. When the stiffness properties are considered the continuous beam spring between
the two mass allocation points is meant. In the case of mass properties, the lumps of mass between
the mass allocation points must be considered. Nevertheless, the definition of element is consistent
because the location of the mass allocation points is independent of which properties, stiffness or
mass are being investigated. However, this definition is not always taken here. For example, to
draw a parallel between the determination of the mass matrix in the discrete and the finite element
method, it is easier to let coincide the elements with the lumped masses.

For convenience, the ijx and ij #x axes point along the longitudinal axis of the beam and ijy; ij #y; ijz
and ij #z along the principal axes of the cross-section in which the frame is attached, when the beam
is in undeformed state. The principal axes of a cross-section are those axes where the cross
moments of inertia equal zero [34]. The principal axes are properties of the cross-section and can
be calculated for a beam in undeformed state, because it is supposed that during bending, the
cross-sections only perform a displacement and a rotation and do not undergo any deformation.
The element reference frame ðij #x; ij #y; ij #zÞ; follows the orientation and the displacement of the cross-
section.

4.2.2. Calculation of the first term of the right hand side of Eq. (7)

The calculation of the first term of the right hand side of Eq. (7) i.e.,Xn

i¼1

Xmbi

j¼1

Z
Vij

deTij rij dVij ð15Þ

involves the calculation of the contributions of the flexibilities of each individual body to the
global stiffness matrix Ks (Eq. (8)) of the system. It will be shown how the theory of mechanics of
solids can be applied to derive the contributions of the flexibilities of the individual bodies to the
stiffness matrix i.e., how the discrete element methodology for beam structures, which is
developed for one single body, can be used for multibody systems.

For linear elastic isotropic homogeneous materials [34] the formulas of mechanics of solids
apply and the strain energy equals the complementary energy [35]. Therefore, as proved in Ref.
[16], Eq. (15) can be written as a function of the quantities of the cross-section of the beamXn

i¼1

Xmbi

j¼1

Z
Lij

dNijNij

EijAij

þ
dMyijMyij

EijIyij

þ
dMzijMzij

EijIzij

þ
kyijdSyijSyij

GijAij

(

þ
kzijdSzijSzij

GijAij

þ
dMtijMtij

GijJij

�
dlij

)
ð16Þ

ARTICLE IN PRESS

J. Anthonis, H. Ramon / Journal of Sound and Vibration 266 (2003) 515–534 527



in which Lij is the total length and dlij an infinitesimal piece of the beam element ij: The first three
terms in Eq. (16) express the virtual work of the beam due to extension or contraction of the cross-
section and can be caused by a tension force Nij or a bending moment Myij or Mzij around one of
the principle axes. The following two terms are the contributions of shear forces Syij or Szij ; also
directed along the principal axes and acting on the cross-section. The last term represents the
virtual work due to torsion Mtij of the cross-section. All the quantities Nij ; Myij; Mzij ; Syij; Szij; and
Mtij are interpreted in the intermediate element reference frame ðijx; ijy; ijzÞ: Note that Nij ; Myij;
Mzij ; Syij; Szij and Mtij are actually scalar functions of which the interpretation is unambiguous
once the principal axes of the cross-section are known. The other symbols are material properties
or properties of the cross-section i.e. Eij; Young’s modulus of element j in body i; Gij; the shear
modulus of element j in body i; Aij; the cross-section of element j in body i; Iyij (Izij), the bending
moment of the cross-section around the yðzÞ axis of the intermediate element reference frame of
element j in body i; Jij ; the torsion moment of inertia of element j in body i: Expression (16) is also
valid for curved beams, as long as the radius of curvature is not smaller than two times the height
or the width of the cross-section [22,34].

The theory of elasticity proves that the effects of various loads may be superimposed, provided
that the strains and the rotations are sufficiently small and the elasticity is linear [33,35]. Keeping
this in mind, the quantities Nij; Myij; Mzij; Syij; Szij ; and Mtij are linear functions of the external
loads (forces and couples) applied to body i and not only of the forces working on element ij: As
the location and orientation of ðijx; ijy; ijzÞ remains constant with respect to the floating reference
frame ðix; iy; izÞ; Nij ; Myij; Mzij ; Syij; Szij; and Mtij can be interpreted as parts of the global Ni; Myi;
Mzi; Syi; Szi; and Mti functions of body i for element ij: Therefore, without loss of generality, Nij ;
Myij; Mzij ; Syij; Szij ; and Mtij can be seen as linear functions of a load vector ldik; in which ldik is the
kth external load acting on body i; interpreted in ðix; iy; izÞ: Consequently, the partial derivatives,
@Nij=@ldik; @Myij=@ldik; @Mzij=@ldik; @Syij=@ldik; @Szij=@ldik and @Mtij=@ldik are constant with respect
to ldik: Because one single load ldik can be decomposed along ix; iy; iz; it is represented by a vector.

Referring to the basic concept of the method, which is represented in Fig. 3, it is important to
note that ldik represents all types of external forces, including inertia forces from the masses in the
mass allocation points. The above derivations are valid when the system is in static equilibrium.
According to the principle of d’Alembert, acceleration of mass can be interpreted as inertia forces.
By this interpretation, the structure can be considered in static equilibrium such that the above-
mentioned derivations can be applied. By using the operator

Dldi
¼

@

@ldi1
?

@

@ldik

?
@

@ldinld

� �T

ð17Þ

in which sub-subscript nld is the total number of loads acting on body i; and by collecting all loads
ldik acting on body i in the vector Ldi Eq. (16) can be rewritten in

Xn

i¼1

dLdTi
Xmbi

j¼1

Z
Lij

Dldi
NijNij

EijAij

þ
Dldi

MyijMyij

EijIyij

þ
Dldi

MzijMzij

EijIzij

(

þ
kyijDldi

SyijSyij

GijAij

þ
kzijDldi

SzijSzij

GijAij

þ
Dldi

MtijMtij

GijJij

�
dlij

)
: ð18Þ
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According to Castigliano’s theorem [34,35], every sum:

uik ¼
Xmbi

j¼1

Z
Lij

Nij

EijAij

@Nij

@ldik

þ
Myij

EijIyij

@Myij

@ldik

þ
Mzij

EijIzij

@Mzij

@ldik


þ

kyijSyij

GijAij

@Syij

@ldik

þ
kzijSzij

GijAij

@Szij

@ldik

þ
Mtij

GijJij

@Mtij

@ldik

�
dlij ð19Þ

represents the displacement or rotation uik of the point in which the load ldik is acting. The points
of which the displacements and rotations are determined by the vectors uik are called nodal co-
ordintates or nodal points by analogy with the finite element method. They must be interpreted in
the floating reference frame because ldik is also considered in this frame ðix; iy; izÞ: Note that with
Eq. (18), the co-ordinates uik can only be calculated on the point of action of the loads.
Consequently, contrary to the finite element method, the selection of the nodal points and the
elements is not completely free. This implies that points where loads are acting must be nodal
points. The mass allocation is still free. Furthermore, only concentrated loads may be applied to
the beams of body i; otherwise the integral expression in Eq. (19) loses its interpretation of a
flexible co-ordinate. By the finite element method, distributed loads are divided among the nodal
co-ordinates by the shape functions. Actually, the same method can be applied here. By collecting
all vectors uik of body i in a vector ui; Eq. (18) reduces toXn

i¼1

fdLdTi uig: ð20Þ

Eq. (20) indicates how the stiffness method or the discrete element method [20] for beam elements,
can be applied to derive the stiffness matrix for a flexible multibody system. For one single body
currently called i; without rigid-body degrees of freedom, these methods provide a relation
between the loads applied to the body i and the nodal co-ordinates ui i.e.,

Ldi ¼ Kiui: ð21Þ

The construction of matrix Ki is explained in Ref. [16] and consists of assembling matrices of a
fixed form Kij ; depending on the length of the element ij; some quantities of the cross-section and
material properties of the element. With Eqs. (20) and (21), the contribution of the flexibilities of
the bodies, collected in matrix K; to the stiffness matrix Ks can be written as

K ¼ diag½ðKiÞi
: ð22Þ

This approach is also used in the finite element method where it is applied to each body to obtain
stiffness matrices Ki; which are collected in a global K-matrix. Also in finite element analysis,
matrix Ki is assembled by some fixed matrices Kij : The shape of Kij depends on the type of shape
function selected. It turns out that the matrix Kij for the discrete element method, is in some cases
exactly the same for the finite element method. This happens, for example, in 2-D problems when
Hermitian interpolation functions are used for beam elements [16]. This is also shown in Ref. [15].

For the derivation of the stiffness matrix, in case of the discrete element method, use has been
made of the theory of mechanics of solids, assuming linear elastic materials according to Eq. (13).
This implies that by the discrete element method, only material damping can be introduced in an
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artificial way, for example modal damping [36]. For the finite element method, damping can be
introduced by using the Kelvin–Voight model of Eq. (14).

4.2.3. Determination of the mass matrix
The notion of mass allocation point is broadened to nodal point. From now on, mass allocation

points also include points in which loads are acting and to which no mass is allocated. In order to
keep the mass matrix Ms regular, it is correct to allocate mass to every mass allocation point. This
mass matrix Ms is calculated by equating the left hand side of expression (7). As can be seen from

Eq. (7), the position of every point 0pij needs to be known, which can be calculated by Eq. (1). The

only unknown is the displacement vector 0tij ; representing the flexible deformations of body i:
Fortunately, this vector can easily be determined, as every flexible body is lumped in
undeformable masses, which are rigidly connected to the mass allocation points. Consequently

according to Fig. 4, within the element reference frame ðij #x; ij #y; ij #zÞ; connected to the mass
allocation point, having nodal co-ordinates uik; every point Pij of the lumped mass is characterized

by a constant position vector
bijijtij in the undeformable mass with respect to ðij #x; ij #y; ij #zÞ: As the

lumped mass is undeformable ijtij in ðijx; ijy; ijzÞ and bijijtij in ðij #x; ij #y; ij #zÞ are equal. Vector 0tij can be

expressed as

0tij ¼ 0Ai
iAijtij ð23Þ
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Fig. 4. Description of the position of a point in body i; before and after deformation in case of the discrete element

method.
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with:

tij ¼ �ijtij þ ijAiuikd þ ijAbijijbijijtij ð24Þ

in which uikd are the nodal co-ordinates of uik; expressing displacements. For convenience, the
elements coincide with the lumped masses. Note that according to Eq. (19), uik must be
interpreted in the floating reference frame. The vector uikd is ordered consistently such that the
first entry is the displacement along the ijx-axis, the second entry the displacement along the
ijy-axis and the last entry the displacement along the ijz-axis of the intermediate element reference
frame.

As already noted, the transformation matrix ijAi is a constant matrix. In the case when the

rotations, due to flexible deformations, are small, the transformation matrix ijAbijij can be linearized.

The matrix ijAbijij is a function of the rotational co-ordinates of ijuik; as it describes the difference in

orientation between the intermediate element and the element reference frame, caused by the
flexible deformations.

Left superscripts ij are added to ijuik to indicate that the vector must be interpreted in the
intermediate element reference frame ðijx; ijy; ijzÞ and not in the floating reference frame ðix; iy; izÞ:
Suppose that the three rotational co-ordinates of uik are grouped in uiky and ordered in the same
consistent way as uikd but now with respect to rotations around the ijx-, ijy-, ijz-axis of the

intermediate element reference frame, then ijAbijijbijijtij can be written in linearized form as

ijAbijijbijijtij ¼ ðI3 þ ij *uikyÞ
bijijtij ; ð25Þ

in which B is the tilde operator, defined as

*s ¼

0 �sz sy

sz 0 �sx

�sy sx 0

264
375; ð26Þ

turning a vector into a matrix. The state in which the body i is undeformed is selected as
linearization point, implying all uik equal to zero. Substitution of Eq. (25) into Eq. (24) and taking
into account the following equality, which is a standard result of the tilde operator calculus,
Eq. (24) turns into

tij ¼ ijAiuikd þ
bijij*tTij ijAiuiky: ð27Þ

Note that the transformation of uiky to ijuiky is written explicitly with the constant transformation

matrix ijAi In the most general case, uik is a ð6� 1Þ vector, because the position and orientation of
every lumped undeformable mass is characterized by three translations and three rotations.

Without loss of generality, every vector uik can be ordered such that uik ¼ ½uikd uiky
T: Therefore
Eq. (27), the position tij of a point of a lumped mass as seen in the intermediate element reference

frame ðijx; ijy; ijzÞ; is a linear function of the co-ordinates of the mass allocation point to which the
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lumped mass is attached:

tik ¼ ½I3
bijij*tTij 
 ijAi O3

O3
ijAi

" #
uik: ð28Þ

Eq. (28) has exactly the same form as Eq. (10), expressing displacements for the finite element
approach, in which the transformation matrix Tij of Eq. (10) is written more explicitly as

ijAi O3

O3
ijAi

" #
:

However, in the finite element method, in order to know the displacement of a point tij of an

element ij after deformation, its position must be known as a function of the Cartesian co-

ordinates of ðijx; ijy; ijzÞ when the body i is in its undeformed state. These co-ordinates are filled in,

in WT
ij of Eq. (10) and tij is obtained. This is in contrast to expression (28), where matrix ½I3

bijij*tTij 
 is
a function of the Cartesian co-ordinates of the element reference frame ðij #x; ij #y; ij #zÞ: In the discrete
element method, the flexibilities are framed in the displacements and rotations of the lumped
masses. The lumped masses themselves are undeformable even if the body is in distorted state.

Consequently, all points of a lumped mass, connected to the element reference frame ðij #x; ij #y; ij #zÞ;
are located in this frame in the same way as in the intermediate element reference frame

ðijx; ijy; ijzÞ; when the body is in undeformed state. Therefore, just as WT
ij ; ½I3

bijij*tTij 
 can be

interpreted as dependent of the Cartesian co-ordinates of ðijx; ijy; ijzÞ when the body is undistorted.

WT
ij and ½I3

bijij*tTij 
 are completely equivalent and the latter can be interpreted as a matrix containing

Eq. (10) is more general, because an arbitrary function of the Cartesian co-ordinates of ðijx; ijy; ijzÞ
can be used. Furthermore tij in Eq. (10), can be a function of more than six nodal co-ordinates (3
rotational and 3 translational). Vector uij covers all nodal co-ordinates of one element ij of body i;
whereas uik denotes the nodal co-ordinates of mass allocation point k of body i: This implies that
with Eq. (10), the real position of a point in an element can be better approximated. As Eq. (10) is
a generalization of Eq. (28), the same procedure as for the finite element method can be used to
calculate the mass matrix Ms [8,12,16]. Note that Eq. (28) is derived under the assumption of
small rotations. This supposition is also made in the classical finite element analysis [37].

By Eqs. (28) and (10), it turns out that the discrete element method makes use of linear
interpolation functions to derive the mass matrix. This is inconsistent with the stiffness matrix. In
the theory of mechanics of solids, for example in bending problems, the second derivative of the
displacement of the beam, is proportional to the applied moment to the structure [22].
Consequently, the stiffness matrix obtained by the discrete element method cannot be obtained
from linear displacement functions.

4.2.4. Calculation of the virtual work delivered by the external forces

The external forces to the bodies are represented by the last two terms on the right hand side of
Eq. (28). They include forces of springs and dampers connected to the bodies, gravity force and
control and disturbance forces. For all these forces, the virtual displacements of the point of
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action need to be expressed as a function of the Lagrangian and nodal co-ordinates. Because every
point where a force is acting is a mass allocation point, having nodal co-ordinates, the derivation
is easier than in the finite element method. Vector tij ; the displacement due to flexible
deformations, becomes then simply uik: The procedure to express the displacement of a point as a
function of the generalized co-ordinates is the same for both the discrete and the finite element
methods and has already been discussed in previous sections of the paper. Based on that, the
damping and the total stiffness matrices Cs and Ks can be completed by adding the contributions
of dampers and springs to the contributions of the flexible bodies itself. Similarly, the control and
disturbance input distribution matrices Vs and Ws can be derived. Note that in the case of the
discrete element method only concentrated forces may be used.

5. Conclusions

A systematic procedure has been proposed to derive the linear equations of the motion of
flexible multibody systems of which the flexible parts are a composed of beams. To approximate
the flexibilities, the discrete element method has been used in which the flexible beams are divided
into small undeformable bodies. The flexible connections between these bodies are handled by the
theory of mechanics of solids. By using a general expression of virtual work and an appropriate
description of a point in space, rigid-body motions and flexible deformations are integrated
elegantly in a linear matrix expression, consisting of a mass, stiffness, damping and input
distribution matrices. A comparison has been made between the discrete and finite element
method for approximating the flexible behaviour of the bodies. It turns out that the discrete
element method corresponds to a finite element approximation with an inconsistent mass and
stiffness matrix. The discrete element method assumes implicitly, through the theory of mechanics
of solids, that no material damping is present such that the flexible material itself has no
contribution in the damping matrix. If material damping is required, it must be introduced in an
artificial way by for example modal damping. Furthermore, with the discrete element method,
only concentrated and not distributed forces can be applied to the flexible bodies.
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